		STUDY MODULE D	ESCRIPTION FORM		
	f the module/subject	Code 1010101231010130898			
Field of	study		Profile of study (general academic, practica	,	
		neering First-cycle Studie		2/3	
Elective path/specialty			Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle of	f study:		Form of study (full-time,part-time)	
	First-cyc	cle studies	full-time		
No. of h	ours			No. of credits	
Lectur	e: 30 Classes	s: - Laboratory: 30	Project/seminars:	- 4	
Status o	of the course in the study	program (Basic, major, other)	(university-wide, from another	field)	
		(brak)		(brak)	
Education	on areas and fields of sci	ECTS distribution (number and %)			
techr	nical sciences			4 100%	
-	Technical scie	4 100%			
Resp	onsible for subj	ect / lecturer:	Responsible for subje	ect / lecturer:	
dr ir	iż. Tomasz Schiller		dr inż. Izabela Kruszelnick	ka	
	il: tomasz.schiller@p	ut.poznan.pl	email: izabela.kruszelnicka@put.poznan.pl		
	616652078		tel. 616653661 Faculty of Civil and Environmental Engineering		
	ulty of Civil and Enviro Piotrowo 5 60-965 Poz		ul. Piotrowo 5 60-965 Poz	a b	
-		is of knowledge, skills an			
4	Kasandadaa	Chemistry and physics: basic tel	ms related to properties of so	lids and liquids.	
1	Knowledge				
2	Skills	Ability to read technical drawing	5.		
3	Social competencies	Awareness of need to constantly	vupdate and supplement know	vledge and skills.	
Assu	-	ectives of the course:			
Acquire	• •	and skills in materials technology a	and fittings techniques essenti	al to solving typical practical	
	Study outco	mes and reference to the	educational results fo	r a field of study	
Know	/ledge:				
		nical, physical, mechanical and teo theirs significance (effect achieve			
2. Stuc	lent has a basic know ering (effect achieved	ledge concerning of using metals during lectures) - [K_W02, K_W0	and alloys, polymers and sanit	tary ware in environmental	
3. Stuc	lent has a basic know	ledge concerning of using various <_W02, K_W05, K_W07]	• •	with piping materials (effect	
	lent knows and under 2, K_W05, K_W07]	stands principle of various kind of	valves (effect achieved during	lectures) -	
5. Stuc		concerning of materials resistance	e at external factors (effect ach	nieved during lectures) -	
	lent understands the r lectures) - [K_W02, K	need for appropriate selection of m _W05, K_W07]	aterials in accordance with the	eir properties (effect achieved	
	lent knows and unders s) - [K_W02, K_W05,	stands limitations of fitting techniq K_W07]	ues used in environmental eng	gineering (effect achieved during	
Skills					

1. Student can show possible application of individual materials in environmental engineering (effect achieved during laboratories) - [K_U01, K_U013]

2. Student can select material for projects for technical subjects at next years of studies (effect achieved during laboratories) [K_U01, K_U05, K_U013]

3. Student can point at possible kind of jointing for individual materials (effect achieved during laboratories) - [K_U01, K_U013]

4. Student can show application of individual kind of valves (fittings) (effect achieved during laboratories) - [K_U01, K_U013]

Social competencies:

1. Student understands the need for teamwork in solving theoretical and practical problems (effect achieved during laboratories) - [K_K03, K_K04]

2. Student is aware of the advantages, disadvantages and limitations technical solutions applied (effect achieved during laboratories) - [K_K01 , K_K05]

3. Student sees the need for systematic increasing his skills and competences (effect achieved during laboratories) - [K_K01]

4. Student is aware of fundamental principles of industrial safety during installation work (effect achieved during laboratories) - [K_K01, K_K04, K_K05]

Assessment methods of study outcomes

Lectures

Written final multianswer test (effects W1 to W7). Mark scale (percentage / mark): 0-50 ndst, 51-60 dst, 61-70 dst+, 71-80 db, 81-90 db+, 91-100 bdb

Laboratory in two modules (work in groups - effects K1, K2, K3, U1, U2).

The first module consist of 11 classes, final multianswer test (threshold to pass 50%). The second module consist of 4 classes, final test with open questions or multianswer test (threshold to pass 50%). Effects K2, K3, K4, U1, U3, U4.

Final mark calculated as mean. Weight of an mean - 11/15 from first module, 4/15 - from second module. It is necessary to obtain minimum 3,0 form each module.

Course description

Basic chemical, physical, mechanical and technological properties of materials used in environmental engineering.

Group of materials used in environmental engineering: iron alloys, cupper, cupper alloys, other metals and their alloys, polymers, sanitary ware. Advantages, disadvantages and limitations in using of individual materials. Possible interactions between different materials or between them and environment. Classification of materials due to their properties, production technology etc. Materials marking methods. Methods and technologies for materials jointing. Tools and equipment used in various jointing technologies.

Valves (fittings) used in environmental engineering (classification, applications, advantages, disadvantages and limitations in using).

Special technical solutions of sanitary installations.

Practical exercise:

1. Sorts and dimensionig of instalation element joints

- 2. Screwed connection of steel pipes
- 3. Soldered connections of copper pipes

4. Glued connections, welded and clamped connections of plastic pipes

- 5. Corrosion process of selected metals and their alloys
- 6. Fittings
- 7. Identification of polymers, properties of mineral materials

Education method

Lectures (conversatory and problem elements of lectures) using multimedia presentation.

Laboratory clases with demonstration and assembly of instalation elements.

Basic bibliography:

1. Bagieński J., Materiałoznawstwo instalacyjne, Wydawnictwo Politechniki Poznańskiej, Poznań 1985

2. Płuciennik M., Zimmer J., Projektowanie instalacji wodociągowych wody zimnej i ciepłej, Instytut Techniki Budowlanej, Warszawa 2012

3. Adamski M., Materiałoznawstwo instalacyjne. Ćwiczenia laboratoryjne, Wydawnictwo Politechniki Białostockiej, Białystok 2006

Additional bibliography:

1. Lars-Eric J., Rury z tworzy sztucznych do zaopatrzenia w wodę i odprowadzania ścieków, Polskie Stowarzyszenie Producentów Rur i Kształtek z Tworzyw Sztucznych, Toruń 2010

2. Hyla I., Tworzywa sztuczne. Własności-przetwórstwo-zastosowanie, Wydawnictwo Politechniki Śląskiej, Gliwice 2004

Result of average stud	dent's workload	
Activity		Time (working hours)
1. Participation in lectures		30
2. Participation in practical exercises	30	
3. Participation in consultations related to practical exercises	1	
4. Preparation for the practical exercises	15	
5. Preparation for the exam	22	
6. Presence at the exam		2
Student's wo	rkload	
Source of workload	hours	ECTS
Total workload	100	4
Contact hours	65	2
Practical activities	45	2